首页 > 教育资讯

函数的奇偶性怎么看?

发布时间:2024-06-29 21:02:56 | 917教育网

函数的奇偶性怎么看?相关内容,小编在这里做了整理,希望能对大家有所帮助,关于函数的奇偶性怎么看?信息,一起来了解一下吧!

本文目录一览:

函数的奇偶性怎么看?

函数的奇偶性怎样判断?

一般地,对于函数f(x)
⑴如果对于函数f(x)定义域内的任意一个x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。如f(x)=x^2,
⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。如f(x)=x^3,
⑶如果对于函数定义域内的任意一个x,都有f(x)=f(-x)和f(-x)=-f(x),(x∈R,且R关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。
⑷如果对于函数定义域内的存在一个a,使得f(a)≠f(-a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
定义域互为相反数,定义域必须关于原点对称
特殊的,f(x)=0既是奇函数,又是偶函数。
说明:①奇、偶性是函数的整体性质,对整个定义域而言。
②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。
(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)
③判断或证明函数是否具有奇偶性的根据是定义。
④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。
⑤如果函数定义域不关于原点对称或不符合奇函数、偶函数的条件则叫做非奇非偶函数。例如f(x)=x³【-∞,-2】或【0,+∞】(定义域不关于原点对称)
⑥如果函数既符合奇函数又符合偶函数,则叫做既奇又偶函数。例如f(x)=0
注:任意常函数(定义域关于原点对称)均为偶函数,只有f(x)=0是既奇又偶函数

函数的奇偶性怎么看?

函数的奇偶性怎么看?

当x趋近于0时,所有指数函数趋近于1,所有对数函数都趋近于负无穷或正无穷,所有幂函数都趋近于0。

解析(规律):

1、指数函数:

一般地,函数 (a为常数且以a>0,a≠1)叫做指数函数,函数的定义域是R。 对于一切指数函数来讲,值域为(0, +∞)。指数函数中 前面的系数为1。

所以当x趋近于0时,所有指数函数趋近于1。

2、对数函数:

一般地,函数y=log (a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。其中x是自变量,函数的定义域是(0,+∞),即x>0。值域为(-∞,+∞)。

所以当x趋近于0时,所有对数函数都趋近于负无穷或正无穷。

3、幂函数

幂函数的一般形式是 ,其中,a可为任何常数,但中学阶段仅研究a为有理数的情形(a为无理数时取其近似的有理数),这时可表示为 ,其中m,n,k∈N*,且m,n互质。特别,当n=1时为整数指数幂。

所以当x趋近于0时,所有幂函数都趋近于0。

扩展资料:

一、对数函数的其他性质

1、定点:

对数函数的函数图像恒过定点(1,0)

2、单调性:

(1)a>1时,在定义域上为单调增函数。
(2)0<a<1时,在定义域上为单调减函数。

3、奇偶性:

非奇非偶函数。

4、周期性:

不是周期函数。

5、零点:

x=1注意:负数和0没有对数。

二、指数函数的其他性质

1、函数图形都是上凹的。函数总是在某一个方向上无限趋向于X轴,并且永不相交。

2、单调性:

(1)a>1时,则指数函数单调递增。

(2)若0<a<1,则指数函数单调递减。

3、定点:

函数总是通过(0,1)这点(若y=a*+b,则函数定过点{0,1+b)}

4、奇偶性:

指数函数是非奇非偶函数

5、反函数

指数函数具有反函数,其反函数是对数函数,它是一个多值函数。

三、幂函数的的其他性质

1、奇偶性:

(1)当m,n都为奇数,k为偶数时,定义域、值域均为R,为奇函数。

(2)当m,n都为奇数,k为奇数时,定义域、值域均为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),为奇函数。

(3)当m为奇数,n为偶数,k为偶数时,定义域、值域均为[0,+∞),为非奇非偶函数。

(4)当m为奇数,n为偶数,k为奇数时,定义域、值均为(0,+∞),为非奇非偶函数。

(5)当m为偶数,n为奇数,k为偶数时,定义域为R、值域为[0,+∞),为偶函数。

(6)当m为偶数,n为奇数,k为奇数时,定义域为{x∈R|x≠0},也就是(-∞,0)∪(0,+∞),值域为(0,+∞),为偶函数。

2、正值性质

当α>0时,幂函数 有下列性质:

(1)图像都经过点(1,1),(0,0)。

(2)函数的图像在区间[0,+∞)上是增函数。 917教育网

(3)在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。

3、负值性质

当α<0时,幂函数 有下列性质:

(1)图像都通过点(1,1)。

(2)图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)。

(3)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。

4、零值性质

当α=0时,幂函数 有下列性质:

的图像是直线y=1去掉一点(0,1)。它的图像不是直线。

参考资料来源: 百度百科-对数函数

参考资料来源: 百度百科-指数函数

参考资料来源: 百度百科-幂函数

函数的奇偶性怎么看?

函数的奇偶性有哪些?

917教育网(https://www.917edu.com)小编还为大家带来函数的奇偶性有哪些?的相关内容。

函数的奇偶性口诀如下:奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数*奇函数=偶函数,偶函数*偶函数=偶函数,奇函数*偶函数=奇函数,复合函数的奇偶性:内偶则偶,内奇同外;复合函数的单调性:同增异减。

1、奇函数在其对称区间[a,b]和[-b,-a]上具有相同的单调性,即已知是奇函数,它在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上也是增函数(减函数)。

2、偶函数在其对称区间[a,b]和[-b,-a]上具有相反的单调性,即已知是偶函数且在区间[a,b]上是增函数(减函数),则在区间[-b,-a]上是减函数(增函数)。由单调性不能代表其奇偶性。验证奇偶性的前提要求函数的定义域必须关于原点对称。

3、用定义来判断函数奇偶性,是主要方法。首先求出函数的定义域,验证是否关于原点对称。其次化简函数式,然后计算f(-x),最后根据f(-x)与f(x)之间的关系,确定f(x)的奇偶性。

以上就是函数的奇偶性怎么看?全部内容了,了解更多相关信息,关注917教育网。更多相关文章关注917教育网:www.917edu.com

免责声明:文章内容来自网络,如有侵权请及时联系删除。
与“函数的奇偶性怎么看?”相关推荐
热点推荐